Ancient Maya Cave Use at Caracol, Belize

Reiko Ishihara-Brito, Jaime J. Awe, and Arlen F. Chase

Caves and other related subterranean features such as cenotes and rockshelters are ubiquitous topographic features in the landscape in the Maya area. They have been the subject of intensive archaeological investigations in recent years, shedding light on the multifaceted roles these features played as cosmologically important places where supernaturals were venerated and through which they were communicated (e.g., Awe 1998; Awe 1999; Awe and Griffith 2002; Honor Villarejo 1989; Brady 1989; Brady and Prufer 2005; Griffith, et al. 2000; Helmke 2009; Ishihara 2008, 2009; Ishihara, et al. 2001; Morehart 2002; Moyes 2001, 2006; Peterson 2006; Prufer 2002; Prufer and Brady 2005; Rissolo 2003; Woodfill 2007). Stemming from research conducted at Dos Pilas, one line of investigation focused on the centrality of caves in the spatial layout of buildings and settlements, pointing out the abundance of Maya sites which have architecture associated with caves (Brady 1997). At a more basic level, cave features with evidence of prehispanic use have been reported from in and around many major Maya sites including Copan (Brady 1995; Gordon 1898), Mayapan (Brown 2005; P. E. Smith 1954; 1955; R. E. Smith 1953; 1954), and Pusilha (Joyce 1929; Joyce et al. 1928), among others. At Caracol, reconnaissance in the vicinity of the epicenter revealed the presence of a number of caves and sinkholes. These were first formally investigated by William Feld (1994), and more recently, by Ishihara-Brito and Awe (Ishihara 2003).

The Caracol Regional Cave Survey

In the Caracol Regional Cave Survey, caves were broadly defined, based on the linguistic premise that the term ch'en, meaning “hole in the earth” in many Mayan languages, encompasses a range of subterranean features such as springs, waterholes, ravines, sinkholes, rockshelters, cenotes, and chasms (Vogt 1981:120; Vogt and Stuart 2005; see also Ishihara 2009; Prufer 2002; Rissolo 2003). Ethnographic and ethnohistoric sources show that what was conceptually important to the Maya peoples is and was the break in the earth’s surface and not necessarily the morphology or the size of the feature (e.g., Brady 1997:603). As access points where the levels of the universe could be traversed (e.g., Chase and Chase 2009),
Subterranean features were portals to the supernatural world, and as places laden with potent powers, various ritual activities were performed in caves (e.g., Brady and Prüfer 2005; Guerra and Ishihara 2007; Ishihara 2009; Moyes et al. 2009; Prüfer and Brady 2005; Scott 2009).

The morphology of the Caracol caves varies and consists of sinkholes, sinkholes with horizontal passages, horizontal caves, and depressions filled with debris. Sinkholes are generally vertically sided pits with circular entrances. Some sinkholes have horizontal passages that branch out from the shaft sides, usually from the basal portion of the feature. Horizontal cave entrances occur along the sides of hills and such caves consist of dark zones where sunlight does not extend beyond a penumbral zone. Depressions are relatively shallow (0.4 – 3.0 m deep) and may be sinkholes, chultuns, or reservoirs, but because they are largely filled in with humic debris, their identification cannot be securely determined.

One of the primary objectives of the survey was to assess the extent of the use of subterranean features in the landscape surrounding Caracol. In an effort to cover as much ground as possible, the reconnaissance was facilitated by the assistance of several site rangers and Belizean workers; these individuals were familiar with both the general Caracol topography and the location of the cave sites previously reported by Feld (1994). All cave locations were recorded with a handheld GPS unit. The caves were explored and mapped. If present, artifacts were collected from the surface. All modifications in caves, including the construction of architectural features and speleothem¹ breakage, were documented. Any associations of a cave with surface structures were also noted. While the survey was able to cover only a small fraction of the area surrounding the Caracol epicenter, a high frequency of cave features was documented.

Survey Findings

A total of 25 subterranean features were located and recorded (Figure 1), revealing a geomorphological diversity consisting of two horizontal caves (Figure 2), five sinkholes with horizontal passages (Figure 3), nine sinkholes (Figure 4), and nine depressions. Three, possibly four, of the seven caves reported by Feld (1994) were located. Most of the caves reported here are located within a 3 km radius from the site center of Caracol; the other three lie about 6 km from the site center, along the Caracol access road. These subterranean features were only opportunistically located and many more exist in the area surrounding Caracol, as the LIDAR data obtained in 2009 shows that scores of other caves remain to be visited (Weishampel et al. 2010; 2011).

During the course of this research, fourteen caves were explored and ten were mapped. Archaeological materials – including artifacts, architectural features constructed in the caves, petroglyphs, broken speleothems, and associated architectural features immediately outside the cave entrance – were observed in ten caves. Many of the underground features consist of sinkholes and a large number of them showed evidence of ancient usage including construction of architectural features, presence of artifacts, and speleothem breakage. In half of the sinkholes, prehispanic use was not confirmed as excavations were not conducted, but it is likely that any remains are buried under layers of soil that have been deposited at the bottom of these features over the years. All of the sinkholes that have a horizontal, dark-zone component contained archaeological materials, suggesting that people
were entering these sinkholes and not simply tossing materials, such as offerings, into these features from the ground surface. Although the sinkhole or horizontal cave openings could measure upwards of 10 m in diameter, usually they are much smaller and measured only 2 to 3 m in diameter. This is in stark contrast to the more grandiose cave entrances common in the lower Macal River Valley north of Caracol (Griffith et al. 2000; Ishihara et al. 2001).

Structural Modifications to Caves
One of the striking findings of the reconnaissance was the documentation of a variety of structural modifications to the subterranean features. These modifications were produced by either additive or subtractive techniques. Additive techniques include construction of minor architectural features within the cave environment or in the immediate entrance area outside of the cave. The vertical walls of the sinkhole entrances were reinforced in a few cases with retaining walls (CC6, CC16, possibly Cueva del Mal Viento and CC10; for cave locations, see Figure 1). Spaces inside some caves were also reconfigured at some point during their use; in several cases, entranceways or passageways were restricted to varying degrees by the stacking of uncut stones and speleothems (Cueva Tabano, Northwest Cave, Skull Cave, Cueva Mono) (Figure 5). Visual inspection suggests that the stones and speleothems were dry-laid with no apparent mortar. In at least one instance (Northwest Cave), the entrance to the cave may have been blocked entirely, as suggested by the large quantity of stones that collapsed inward (Figure 6); similar cases have been observed at Cueva de El Duende and Cueva de Sangre in the Petexbatun region of Guatemala (Brady and Colas 2005: 153–154) and several cave sites in the upper Macal River Valley such as Chechem Ha and Actun Chapat. Such blockage of cave entrances may be significant, especially as recent epigraphic research suggests that caves were targeted places of attack and were desecrated by rival political entities as an act of war (Brady and Colas 2005; Colas 1998; Helmke and Brady 2010).

Simple bridges were created by stacking rocks and broken speleothems across small pits or depressions to seemingly facilitate access within the caves (Cueva del Mal Viento, Skull Cave). In still other cases, passages were modified by a combination of breaking and stacking speleothems. At the end of the entrance passage of Cueva Tabano, the western portion of the curtain-like speleothem formation that runs across the passage had been broken and removed, while the eastern portion appears to have been blocked by the placement of rocks and speleothems. Other possible architectural features include platforms (Cueva Pizarra, Cueva Tabano, and Cueva Mono) and an altar-like feature comprised of a pile of large stones in an otherwise cleared chamber (Cueva Tabano). Subtractive techniques of structural modification to cave interiors include the aforementioned breakage of speleothems (Cueva Pizarra, Cueva del Mal Viento, Cueva Tabano, Cueva Mono). Close examination of the breakage scars on speleothems noted rounded scar edges along with the presence of re-growth on the formation surfaces. These features indicate that the speleothems had not been broken recently and were likely the result of ancient human modification. Human-induced speleothem breakage is also indicated when evidence of selective breakage occurs (e.g., when breakage does not occur uniformly in one area). Breakage and subsequent transportation or removal of speleothems is evident in several caves (Cueva Pizarra, Cueva del Mal Viento, Cueva Tabano, and Cueva Mono). Some were used in the caves as construction materials, such as...
as at Cueva Tabano. Their presence in archaeological contexts at the surface site suggests that they also served important ritual functions. Speleothems are often found within the fill or in front of the eastern buildings of Caracol’s residential groups (Figure 7; see also Chase and Chase 1994:57; Chase and Chase 1998:311). As these buildings served as shrines and mausoleums for the various residential groups, the placement of speleothems within these structures must have been purposeful. Other speleothems have also been recovered from construction fill within Caracol’s monumental architecture (Structure A1, Structure A6, and Caana), possibly reflecting the ritual functions of these epicentral edifices and complexes. The inclusion of speleothems in construction programs may have been a widespread practice, as it has been documented at sites including Aguateca, Guatemala (Structure L8-8) (Takeshi Inomata, personal communication, 2004) and several others in the Sibun Valley of Belize (Peterson et al. 2005: 232–236). Elsewhere, the occurrence of speleothems has been related to ritual cache deposition within building projects; they occur within the ball court alley at Baking Pot (Ferguson 1998) and the Hershey Site (Peterson et al. 2005:233) as well as in circular shrines at Pechtun Ha, Samuel Oshon, and Augustine Obispo (Peterson et al. 2005:233). Small cave pearls, spheroid speleothems, were documented from Middle Preclassic caches at Cahal Pech and Barton Ramie (Awe 1992:308–309, figs. 91 l-o; Willey et al. 1965:487–488).

Important cultural modifications are often found in the immediate vicinities of cave entrances. Modern ritual activities carried out at caves demonstrate that this area is an integral activity space that should not be ignored in archaeological investigations of cave rituals (Guerra and Ishihara 2007; Halperin et al. 2003). The area in front of the entrance of Northwest Cave and the area around the sinkhole entrance of Cueva Tabano have relatively flat surfaces that are suspected to have been the loci of ritual ceremonies, but excavations are necessary to confirm this observation.

Another decorative modification found within caves consists of petroglyphs executed on cave formations. At Northwest Cave, at least two simple pecked faces, each comprised of two eyes and a linear mouth, were identified. Such simple faces are commonly reported from caves throughout the Maya area, such as at Actun Uayazba Kab in the Roaring Creek Valley (Helmke et al. 2003:figs. 40a, b, f, h, h–j) and Te Tun Cave in the Caves Branch area of Belize (Bonor Villarejo 2002), the Main Chasm at Aguateca (Ishihara 2009:fig. 4.9) and Cueva Jutéria in the department of Peten in Guatemala (Stone 2003: fig.45), and Aktun Ch’en Chin and an unnamed cave in the state of Yucatan in Mexico (Bonor Villarejo and Sanchez y Pinto 1991: figs. 7, 11).

Occasionally, caves are integrated into the layout of buildings and other structures. In the Caracol residential area, several possibilities were located. At Cueva del Mal Viento small low structures were noted adjacent to the cave entrance. At one sinkhole (CC7), two walls were observed adjacent to the entrance: a one- to two-course high wall outlines a quarter of the circumference of the sinkhole entrance and a three-course high linear wall runs on the opposing side of the sinkhole. Another sinkhole (CC6) has a possible low wall and structures on its southern side.

Cultural Materials

Cultural materials observed in the Caracol caves are consistent with those documented for caves elsewhere in the Maya area. In addition to human and faunal remains, ceramics and lithics were found in seven caves. Over a third of the ceramic sherds were diagnostic and all but one sherd are of Late Classic types typical of the area. The predominance of Late Classic sherds and a lack of Postclassic material suggest that the
last major time period of use was during the Late Classic; this would be consistent with other data from the site (Chase and Chase 2010). Earlier use is hinted at by the occurrence of one Late Preclassic sherd of Flor Cream type in Northwest Cave. Other earlier material, if present, is likely buried within cave sediments. In addition, a concentration of slate or shale fragments was recovered in Cueva Pizarra (CC2), a miniature greenstone celt was encountered in Skull Cave (CC18), and a metate and kaolinite, or sascab, were noted in Cueva Cerda (CC16).

A noteworthy, though inconclusive, find was a possible stone monument. In Cueva Tabano a large, flat, triangular limestone slab (1.9 m at base, 1.8 m high, 0.8 m high) was found in a free-standing vertical position; it was supported by smaller limestone rocks and was atop what may be a long platform structure that ran along the passage (Figure 8). It is unlikely that natural causes could account for the upright placement of this exceptionally large rock, meaning that the rock’s placement likely was intentional. Albeit apparently uncarved and with no visible traces of paint, it may have been a monument akin to those reported from other cave sites in western Belize (Awe et al. 2005). Indeed, the vertically-standing, triangular stone slab found in Cueva Tabano (CC8) may be evidence of a pattern of raising megalithic monuments in caves as a focal point to conduct ritual activities. Four stelae (all without any inscriptions, but some of which were modified) have been reported from cave sites in Belize and it has been suggested that they may have functioned to demarcate spaces reserved for ritual performances by people of high status (Awe et al. 2005). The dimensions of the Tabano stone are larger than those discussed by Awe and his colleagues, but another cave in western Belize, Stela Cave, houses two large stone slabs, one of which is similar in size, shape, and position (Ishihara and Griffith 2004). As excavations were not conducted in Cueva Tabano, the cultural significance of this monument cannot be contextualized.

Human remains are commonly found in caves, although the frequency varies between sites. In the sample discussed here, Skull Cave was the only cave noted to contain human remains. Without a careful analysis of the bones and their spatial distribution, it is difficult to assess whether they represent secondary interments and whether they were thrown in from an upper level (Feld 1994). Feld (1994:81) observed five crania on the surface of this deposit, further recording eight femurs, eight radii, three mandible fragments with teeth, and two vertebrae. Excavation would surely show the MNI to be much higher. However, the relatively low frequency of individuals represented in this cave negates any notion of an ossuary. Other bones may have been curated as part of ancestor veneration and associated ritual activities (McAnany 1995:61–63). Scott and Brady (2005:274–278) note that human remains in caves may sometimes represent human sacrifice, specifically as offerings to the earth gods and ancestors.

Poor Air Quality in Caves

One noteworthy observation of many of the caves explored during this survey was the poor air quality – unusually high levels of carbon dioxide in the caves. This fact was commented on by Feld (1994:82) in 1994 and was noted for five caves in the current survey. Even earlier, Anderson (1962:327) reported similar air conditions in other caves in the general area. Further studies are necessary to determine why the higher levels of carbon dioxide occur and to see if the presence of such poor air quality extends back to the Classic period when these caves would have been used.

Fig. 6. Photo of possibly blocked entrance, suggested by the collapsed stones, Northwest Cave.
Sacred Landscape and Caves at Caracol

The majority of the caves identified and investigated in 1994 and 2002 were not located within the Caracol site core and were, thus, not directly associated with monumental architecture. However, it may be misleading to conclude that the spatial configuration of the Caracol epicenter does not follow the hypothesis presented by Brady (1997), in which he argues that major architecture at Maya sites was often aligned with caves. The two primary plaza groups in the site core, the A Group and B Group, appear to be sited upon areas of poor drainage that retain below-surface water well into the dry season. The water retention in both of Caracol’s main plazas is cosmologically synonymous with the Maya underworld, and the many caves within the broader region would symbolically have been the entrances to it. Test units excavated in both plazas have yielded extensive seepage. Caana, the largest pyramidal structure at the site sits atop modified rock, which has been suggested to be tufa (Allan Cobb, personal communication, 2002), a soft and porous calcium carbonate deposited from springs, rivers, or lake water (Field 2002). Water has been observed seeping out of the modified portions of this rock (Ishihara 2003). Similarly, excavations in the middle and eastern part of the A Plaza and in front of Structure A1 revealed a high water table; the lower parts of these investigations filled with water once the matrix of clay and stone was removed. In general, however, Caracol is devoid of natural water, causing the Maya living there to construct large reservoirs in areas of major architecture (such as the epicenter) and smaller reservoirs throughout the settlement area. Contemporary drilling for water revealed subterranean streams some 100 m below the present ground surface of the site epicenter, but it is unlikely that these deep water sources were exploited by the ancient Maya.

Fig. 7. Archaeologically recovered speleothems included in the building core of Caracol Structure F39 and recovered during the 2010 field season of the Caracol Archaeological Project.

Concluding Remarks

A high frequency of cave sites exists in the karst landscape of the greater Caracol area. Of the 25 subterranean features thus far investigated, ten evinced archaeological materials or modifications, suggesting that the ancient use of caves in the area was more common than previously recognized. In fact, the majority of the caves that could be entered to any depth contained archaeological evidence of ritual use, including artifacts, speleothem breakage, petroglyphs, and architectural modifications. Possible associations with surface site structures were also noted in two cases, suggesting a direct integration of caves into the architectural and cosmological vernacular of Caracol community members. Noteworthy is the prevalence of architectural modifications made to the interiors of caves, showing a degree of labor investment and the repeated use of these important spaces. The varied geomorphological forms of caves with evidence of prehispanic use documented in this survey caution archaeologists to be aware of our own, biased notion of what constitutes “caves.” A third of all the subterranean features located were depressions filled with debris; their cultural significance can only be unveiled through actual excavation. Even should these prove to be chultuns or reservoirs, the ubiquity of caves throughout Caracol’s landscape would have permitted a large part of the population to engage in underground rituals.

Fig. 8. Photo of limestone slab, which may have been a plain monument, Cueva Tabano.

Acknowledgements

The Caracol Regional Cave Survey was conducted as part of the Western Belize Regional Cave Project under a permit granted to Jaime Awe by the Institute of Archaeology, Belize, and we appreciate their support of this study. The study was funded through a Humanities Graduate Student Research Grant from the University of California at Riverside. We are grateful to the staff and volunteers of the survey, in particular, Allan Cobb, Cameron Griffith, Jenny Guerra, Joseph Hobbs, Sarah Jack, Takashi Ochiai, and Linda Palit. Thanks to Michael Mirro, who produced the map showing the locations of the caves at Caracol. We also acknowledge collaboration from colleagues working on the Tourism Development Project at Caracol, specifically Sherry Gibbs, Juan Luis Bonor, Myka Schwanke, Jim Puc, and Jorge Can. Finally, we would like to thank the two anonymous reviewers for their insightful comments.

References Cited

Anderson, A. H.

Awe, Jaime J.

Awe, Jaime J. (Ed.)

Awe, Jaime J. and Cameron S. Griffith (Eds.)

Awe, Jaime J., Cameron S. Griffith, and Sherry A. Gibbs

Boner Villarejo, Juan Luis

Boner Villarejo, Juan Luis and Iismael Sanchez y Pinto

Brady, James E.

Brady, James E., and Pierre R. Colas

Brady, James E., and Keith M. Prufer (Eds.)
2005 In the maw of the earth monster: Mesoamerican ritual cave use. Austin.

Brown, Clifford T.

Chase, Arlen F., and Diane Z. Chase

Chase, Diane Z. and Arlen F. Chase

Colas, Pierre Robert

Field, William A.

Ferguson, Josalyn

Field, Malcolm S.
2002 A lexicon of cave and karst terminology with special reference to environmental karst hydrology. 2nd ed. Washington, D.C.

Gordon, George Byron

Griffith, Cameron S., Reiko Ishihara, and Jaime J. Awe (Eds.)

Guerra, Jenny and Reiko Ishihara

Halperin, Christina T., Jon S. Sward, and Andrés Brizuela Casimir

Helmke, Christophe G. B.
2009 Ancient Maya cave usage as attested in the glyphic corpus of the Maya lowlands and the caves of the Roaring Creek Valley, Belize. Ph.D. dissertation, Inst. of Archaeology, University College London.

Helmke, Christophe G. B., Jaime J. Awe, and Cameron S. Griffith

Helmke, Christophe G. B., and James E. Brady

Ishihara, Reiko

2009 Bridging the chasm between religion and politics: archaeological investigations of the grietas (chauns) at the Late Classic Maya site of Aguacata, Peten, Guate-mala. Saarbrücken.

Ishihara, Reiko, and Cameron S. Griffith

Ishihara, Reiko, Cameron S. Griffith, and Jaime J. Awe (Eds.)

Joyce, Thomas A.

Joyce, Thomas A., Thomas Gunn, E.L. Gruning, and R.C.E. Long

McAnany, Patricia A.
1995 Living with the Ancestors: Kinship and Kingship in Ancient Maya Society. Austin.

Morehart, Christopher

Moyes, Holley
2001 The cave as a cosmogram: the use of GIS in an intrasite spatial analysis of the Main Chamber of Actun Tunichil Muknal, a ceremonial cave in Western Belize. M.A. thesis, Florida Atlantic University, Boca Raton, Florida.

2006 The sacred landscape as a political resource: a case study of ancient Maya cave use at Chechem Ha Cave, Belize, Central America. Ph.D. dissertation, State University of New York, Buffalo.

Moyes, Holley, Jaime J. Awe, George A. Brook, and James W. Webster

Peterson, Pelly A.

Petersen, Pelly A., Patricia A. McAnany, and Allan B. Cobb

Prufer, Keith M.

Prufer, Keith M. and James E. Brady (Eds.)
2005 Stone houses and earth lords: Maya religion in the cave context. Boulder.

Rissolo, Dominique
2003 Ancient Maya cave use in the Yalahau region, northern Quintana Roo, Mexico. Association for Mexican Cave Studies, Austin.

Scott, Ann M.
2009 Communicating with the sacred earthscape: an ethnoarchaeological investigation of Kaqchikél Maya ceremonies in Highland Guatemala. Ph.D. dissertation, Latin American Studies, University of Texas, Austin.

Scott, Ann M., and James E. Brady
2005 Human remains in lowland Maya caves: problems of interpretation. In: Keith M.
Recent Publications

Books

Ahern, Frances

Aguilera Madrigal, Sabina

Albiz, Sarah et al. (eds.)

Araiza, Elizabeth

Asselbergs, Florine

Bello Baltazar, Eduardo y Erin I. J. Estado Lugo (eds.)

Berez, Andrea L., Jean Mulder, and Daisy Rosenblum (eds.)

Bortoluzzi, Manfredi y Witold Jacorzyński (eds.)